Abstract

Grid computing (GC) systems are large-scale virtual machines, built upon a massive pool of resources (processing time, storage, software) that often span multiple distributed domains. Concurrent users interact with the grid by adding new tasks; the grid is expected to assign resources to tasks in a fair, trustworthy way. These distinctive features of GC systems make their specification and verification a challenging issue. Although prior works have proposed formal approaches to the specification of GC systems, a precise account of the interaction model which underlies resource sharing has not been yet proposed. In this paper, we describe ongoing work aimed at filling in this gap. Our approach relies on (higher-order) process calculi: these core languages for concurrency offer a compositional framework in which GC systems can be precisely described and potentially reasoned about.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call