Abstract

This research article suggests that there are significant benefits in exposing demand planners to forecasting methods using matrix completion techniques. This study aims to contribute to a better understanding of the field of forecasting with multivariate time series prediction by focusing on the dimension of large commercial data sets with hierarchies. This research highlights that there has neither been sufficient academic research in this sub-field nor dissemination among practitioners in the business sector. This study seeks to innovate by presenting a matrix completion method for short-term demand forecast of time series data on relevant commercial problems. Albeit computing intensive, this method outperforms the state of the art while remaining accessible to business users. The object of research is matrix completion for time series in a big data context within the industry. The subject of the research is forecasting product demand using techniques for multivariate hierarchical time series prediction that are both precise and accessible to non-technical business experts. Apart from a methodological innovation, this research seeks to introduce practitioners to novel methods for hierarchical multivariate time series prediction. The research outcome is of interest for organizations requiring precise forecasts yet lacking the appropriate human capital to develop them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.