Abstract

Automatic skeletal muscle image segmentation (MIS) is crucial in the diagnosis of muscle-related diseases. However, accurate methods often suffer from expensive computations, which are not scalable to large-scale, whole-slide muscle images. In this paper, we present a fast and accurate method to enable the more clinically meaningful whole-slide MIS. Leveraging on recently popular convolutional neural network (CNN), we train our network in an end-to-end manner so as to directly perform pixelwise classification. Our deep network is comprised of the encoder and decoder modules. The encoder module captures rich and hierarchical representations through a series of convolutional and max-pooling layers. Then, the multiple decoders utilize multilevel representations to perform multiscale predictions. The multiscale predictions are then combined together to generate a more robust dense segmentation as the network output. The decoder modules have independent loss function, which are jointly trained with a weighted loss function to address fine-grained pixelwise prediction. We also propose a two-stage transfer learning strategy to effectively train such deep network. Sufficient experiments on a challenging muscle image dataset demonstrate the significantly improved efficiency and accuracy of our method compared with recent state of the arts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call