Abstract

Resource Constrained Project Scheduling Problems with minimum and maximum time lags (RCPSP/max) have been studied extensively in the literature. However, the more realistic RCPSP/max problems — ones where durations of activities are not known with certainty – have received scant interest and hence are the main focus of the paper. Towards addressing the significant computational complexity involved in tackling RCPSP/max with durational uncertainty, we employ a local search mechanism to generate robust schedules. In this regard, we make two key contributions: (a) Introducing and studying the key properties of a new decision rule to specify start times of activities with respect to dynamic realizations of the duration uncertainty; and (b) Deriving the fitness function that is used to guide the local search towards robust schedules. Experimental results show that the performance of local search is improved with the new fitness evaluation over the best known existing approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.