Abstract
Image-text retrieval requires the system to bridge the heterogenous gap between vision and language for accurate retrieval while keeping the network lightweight-enough for efficient retrieval. Existing trade-off solutions mainly study from the view of incorporating cross-modal interactions with the independent-embedding framework or leveraging stronger pre-trained encoders, which still demand time-consuming similarity measurement or heavyweight model structure in the retrieval stage. In this work, we propose an image-text alignment module SelfAlign on top of the independent-embedding framework, which improves the retrieval accuracy while maintains the retrieval efficiency without extra supervision. SelfAlign contains two collaborative sub-modules that force image-text alignment at both the concept level and context level by self-supervised contrastive learning. It doesn't require cross-modal embedding interactions during training while maintaining independent image and text encoders during retrieval. With comparable time cost, SelfAlign consistently boosts the accuracy of state-of-the-art non-pre-training independent-embedding models respectively by 9.1%, 4.2%, and 6.6% in terms of R@sum score on Flickr30K, MS-COCO 1K and MS-COCO 5K datasets. The retrieval accuracy also outperforms most existing interactive-embedding models with orders of magnitude decrease in retrieval time. The source code is available at: https://github.com/Zjamie813/SelfAlign.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.