Abstract
Abstract A novel method to fabricate high-performance Al2O3 Ceramics by indirect Selective Laser Sintering (idSLS) based on particle packing optimization was reported. Al2O3 ceramics with the particle size distribution (PSD) being adjusted based on a particle packing model was prepared with the idSLS method, and the effects of PSD on the macro-performance and microstructure of the idSLSed ceramics part was investigated. Results show that an appropriate PSD of raw material is not only essential to the good SLS formability of powder bed but also contribute to the favorable sintering characteristics of the SLSed green body through an ideal particle packing. The improvement of overall properties including mechanic strength, dimensional accuracy, and surface flatness of the SLSed green body and the final parts were achieved with a fine-tuned PSD exponent. When the raw material has a PSD exponent of 0.5–0.6, the final ceramic parts showed relatively balanced comprehensive properties of bulk density >2.0 g cm−3, linear change 3.97 MPa, compressive strength >5.25 MPa and surface altitude difference
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.