Abstract

Information about the collapsed matter in a black hole will be lost if Hawking radiations are truly thermal. Recent studies discover that information can be transmitted from a black hole by Hawking radiations, due to their spectrum deviating from exact thermality when backreaction is considered. In this paper, we focus on the spectroscopic features of Hawking radiation from a Schwarzschild black hole, contrasting the differences between the nonthermal and thermal spectra. Of great interest, we find that the energy covariances of Hawking radiations for the thermal spectrum are exactly zero, while the energy covariances are nontrivial for the nonthermal spectrum. Consequently, the nonthermal spectrum can be distinguished from the thermal one by counting the energy covariances of successive emissions, which provides an avenue towards experimentally testing the long-standing ``information loss paradox.''

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call