Abstract

A three-dimensional hybrid structured-unstructured RANS solver has been developed to simulate flows in complex turbomachinery geometries. It is built by coupling an existing structured CFD solver with a newly developed unstructured-grid module via a conservative hybrid-grid interfacing algorithm, so that it can get benefits from the both structured and unstructured grids. The unstructured-grid module has been developed with consistent numerical algorithms, data structure, user interface and parallelization to those of the structured one. The numerical features of the hybrid RANS solver are its second-order accurate upwind scheme in space, its SGS implicit formulation of time integration, and its accurate modeling of steady/unsteady boundary conditions for multistage turbomachinery flows. The hybrid-grid interfacing algorithm is essentially an extension of the conservative zonal approach that has been previously applied on the mismatched zonal interface of the structured grids, and it is fully conservative and also second-order accurate. Due to the mismatched grids are allowed at the block interface, users would have great flexibility to build the hybrid grids even with different structured and unstructured grid generators. The performance of the hybrid RANS solver is assessed with a variety of validation and application examples, through which the hybrid RANS solver has been demonstrated to be able to cope with the flows in complex turbomachinery geometries and to be promising for the future industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.