Abstract

This paper proposes a class of temporal association rules, denoted by TACOs, for event prediction. As opposed to previous graph rules, TACOs monitor updates to graphs, and can be used to capture temporal interests in recommendation and catch frauds in response to behavior changes, among other things. TACOs are defined on temporal graphs in terms of change patterns and (temporal) conditions, and may carry machine learning (ML) predicates for temporal event prediction. We settle the complexity of reasoning about TACOs, including their satisfiability, implication and prediction problems. We develop a system, referred to as TASTE. TASTE discovers TACOs by iteratively training a rule creator based on generative ML models in a creator-critic framework. Moreover, it predicts events by applying the discovered TACOs. Using real-life and synthetic datasets, we experimentally verify that TASTE is on average 31.4 times faster than conventional data mining methods in TACO discovery, and it improves the accuracy of state-of-the-art event prediction models by 23.4%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.