Abstract

Emotional AI is the next era of AI to play a major role in various fields such as entertainment, health care, self-paced online education, etc., considering clues from multiple sources. In this work, we propose a multimodal emotion recognition system extracting information from speech, motion capture, and text data. The main aim of this research is to improve the unimodal architectures to outperform the state-of-the-arts and combine them together to build a robust multi-modal fusion architecture. We developed 1D and 2D CNN-LSTM time-distributed models for speech, a hybrid CNN-LSTM model for motion capture data, and a BERT-based model for text data to achieve state-of-the-art results, and attempted both concatenation-based decision-level fusion and Deep CCA-based feature-level fusion schemes. The proposed speech and mocap models achieve emotion recognition accuracies of 65.08% and 67.51%, respectively, and the BERT-based text model achieves an accuracy of 72.60%. The decision-level fusion approach significantly improves the accuracy of detecting emotions on the IEMOCAP and MELD datasets. This approach achieves 80.20% accuracy on IEMOCAP which is 8.61% higher than the state-of-the-art methods, and 63.52% and 61.65% in 5-class and 7-class classification on the MELD dataset which are higher than the state-of-the-arts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.