Abstract

Benefiting from the rapid development of convolutional neural networks, the performance of car license plate detection and recognition has been largely improved. Nonetheless, most existing methods solve detection and recognition problems separately, and focus on specific scenarios, which hinders the deployment for real-world applications. To overcome these challenges, we present an efficient and accurate framework to solve the license plate detection and recognition tasks simultaneously. It is a lightweight and unified deep neural network, that can be optimized end-to-end and work in real-time. Specifically, for unconstrained scenarios, an anchor-free method is adopted to efficiently detect the bounding box and four corners of a license plate, which are used to extract and rectify the target region features. Then, a novel convolutional neural network branch is designed to further extract features of characters without segmentation. Finally, the recognition task is treated as sequence labeling problems, which are solved by Connectionist Temporal Classification (CTC) directly. Several public datasets including images collected from different scenarios under various conditions are chosen for evaluation. Experimental results indicate that the proposed method significantly outperforms the previous state-of-the-art methods in both speed and precision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.