Abstract

Dynamic networks are popularly used to describe networks that change with time. Although there have been a large number of research works on understanding dynamic networks using link prediction, node classification and community detection, there is rare work that is specially designed to address the challenge of big network size of dynamic networks. To this end, we study in this paper an emerging and challenging problem of network coarsening in dynamic networks. Network coarsening refers to a class of network “zoom-out” operations where node pairs and edges are grouped together for efficient analysis on big networks. However, existing network coarsening approaches can only handle static networks where network structure weights have been predefined before the coarsening calculation. Under the observation that big networks are highly dynamic and naturally change over time, we consider in this paper to embed information diffusion data which reflect the dynamics of networks for network coarsening. Specifically, we present a new Semi-NetCoarsen approach that jointly maximizes the likelihood of observing the information diffusion data and minimizes the network regularization with respect to the predefined network structural data. The learning function is convex and we use the accelerated proximal gradient algorithm to obtain the global optimal solution. We conduct experiments on two synthetic and five real-world data sets to validate the performance of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.