Abstract
The Compton signal in electron energy loss spectroscopy (EELS) is used to determine the projected electron momentum density of states for the solid. A frequent limitation however is the strong dynamical scattering of the incident electron beam within a crystalline specimen, i.e. Bragg diffracted beams can be additional sources of Compton scattering that distort the measured profile from its true shape. The Compton profile is simulated via a multislice method that models dynamical scattering both before and after the Compton energy loss event. Simulations indicate the importance of both the specimen illumination condition and EELS detection geometry. Based on this, a strategy to minimize diffraction artifacts is proposed and verified experimentally. Furthermore, an inversion algorithm to extract the projected momentum density of states from a Compton measurement performed under strong diffraction conditions is demonstrated. The findings enable a new route to more accurate electron Compton data from crystalline specimens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.