Abstract
Uncertain graph has been widely used to represent graph data with inherent uncertainty in structures. Reliability search is a fundamental problem in uncertain graph analytics. This paper investigates on a new problem with broad real-world applications, the top-k reliability search problem on uncertain graphs, that is, finding the k vertices v with the highest reliabilities of connections from a source vertex s to v. Note that the existing algorithm for the threshold-based reliability search problem is inefficient for the top-k reliability search problem. We propose a new algorithm to efficiently solve the top-k reliability search problem. The algorithm adopts two important techniques, namely the BFS sharing technique and the offline sampling technique. The BFS sharing technique exploits overlaps among different sampled possible worlds of the input uncertain graph and performs a single BFS on all possible worlds simultaneously. The offline sampling technique samples possible worlds offline and stores them using a compact structure. The algorithm also takes advantages of bit vectors and bitwise operations to improve efficiency. In addition, we generalize the top-k reliability search problem from single-source case to the multi-source case and show that the multi-source case of the problem can be equivalently converted to the single-source case of the problem. Moreover, we define two types of the reverse top-k reliability search problems with different semantics on uncertain graphs. We propose appropriate solutions for both of them. Extensive experiments carried out on both real and synthetic datasets verify that the optimized algorithm outperforms the baselines by 1---2 orders of magnitude in execution time while achieving comparable accuracy. Meanwhile, the optimized algorithm exhibits linear scalability with respect to the size of the input uncertain graph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.