Abstract

A new type of environmentally friendly phosphor based on carbon nanodots (CDs) has been developed through the dispersion of CDs by integrating the CDs with starch particles. The starch particles contain large numbers of hydroxyl groups around the surfaces, which can effectively absorb the CDs, whose surfaces are functionalized by lots of carboxyl and amide groups, through hydrogen bonding. Effective dispersion of CDs on the surfaces of starch particles can suppress the non-radiative decay processes and photoluminescence (PL) quenching induced by aggregation of CDs. The starch matrix neither competes for absorbing excitation light nor absorbs the emissions of CDs, which leads to efficient PL emitting. As a result, the starch/CD phosphors with a quantum yield of ∼50% were obtained. The starch/CD phosphors show great potential in phosphor-based light emitting diodes, temperature sensors, and patterning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call