Abstract

Mostly in natural disaster situations, for example an earthquake, we will face a situation where people get trapped and unable to be found as soon as possible due to the unpredictable terrain. Hence, robot is being seen as scouts that able to adapt and perceive, and usually snake type robot is able to move throughout rubble and small confines. Then, the idea of using modular self-reconfigurable (MSR) robots based on CEBOT in 1988 spark an interest to researchers to fit the search and rescue purpose. Besides that, the idea of controlling robots without manual control but by using “thinking” have fascinated researchers and lead to the development of interfaces between human and machines. In 1970, a Brain Computer Interface (BCI) system has been establish and the BCI system usually is based on the Electroencephalogram (EEG) which is the electrical potentials generated in which the information generated by user and independent of any muscular activities. The implementations of both technologies to each other will frontier for a new alternatives which improves self-reconfigurable modular robot in term of control strategy. As a preliminary framework, a simulation is needed to determine both systems capabilities, and it can be achieved by interfacing the robot simulator, OpenVIBE and Virtual Experimentation Platform (V-REP) with the Python programming language. This study presentation will focus on how to control the modular robot in V-REP environment by using Python language which can be used for interfacing with BCI system created in OpenVIBE software and the simulated robot configuration. Each joint handles of modular robot based on V-REP hierarchy being streamed by Python language. There are several methods for establishment of communication between OpenVIBE and other applications. The method purpose in this paper will utilizing Lab Streaming Layer (LSL) and Python script as mediator. The outcome that is expected to be obtained for this study will be the success of communication establish to control virtual modular robot based on data from OpenVIBE. The future work based on this study will involving the BCI system designed using OpenVIBE and implementation to real modular robot might be applied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.