Abstract
SummaryBackgroundCardiovascular diseases may originate in childhood. Biomarkers identifying individuals with increased risk for disease are needed to support early detection and to optimise prevention strategies.MethodsIn this prospective study, by applying a machine learning to high throughput NMR-based metabolomics data, we identified circulating childhood metabolic predictors of adult cardiovascular disease risk (MetS score) in a cohort of 396 females, followed from childhood (mean age 11·2 years) to early adulthood (mean age 18·1 years). The results obtained from the discovery cohort were validated in a large longitudinal birth cohort of females and males followed from puberty to adulthood (n = 2664) and in four cross-sectional data sets (n = 6341).FindingsThe identified childhood metabolic signature included three circulating biomarkers, glycoprotein acetyls (GlycA), large high-density lipoprotein phospholipids (L-HDL-PL), and the ratio of apolipoprotein B to apolipoprotein A-1 (ApoB/ApoA) that were associated with increased cardio-metabolic risk in early adulthood (AUC = 0·641‒0·802, all p<0·01). These associations were confirmed in all validation cohorts with similar effect estimates both in females (AUC = 0·667‒0·905, all p<0·01) and males (AUC = 0·734‒0·889, all p<0·01) as well as in elderly patients with and without type 2 diabetes (AUC = 0·517‒0·700, all p<0·01). We subsequently applied random intercept cross-lagged panel model analysis, which suggested bidirectional causal relationship between metabolic biomarkers and cardio-metabolic risk score from childhood to early adulthood.InterpretationThese results provide evidence for the utility of a circulating metabolomics panel to identify children and adolescents at risk for future cardiovascular disease, to whom preventive measures and follow-up could be indicated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.