Abstract
In double parton scattering (DPS), two partonic collisions take place between one pair of colliding hadrons. The effect of DPS can be significant for precision measurements due to the additional radiation from secondary partonic collisions, and especially for specific processes such as same-sign WW production. Its effect is usually included through Monte Carlo parton showers. In a factorization approach to DPS, the initial state is described by double parton distributions (DPDs). These are currently poorly constrained by experiment, but provide a view on interesting correlations between partons in the hadron. Here we show that the Large Momentum Effective Theory approach can be applied to DPDs. Specifically, we present a general matching relation between DPDs and lattice-calculable quasi-DPDs for general flavor, spin and color structures. We furthermore calculate the one-loop matching coefficients for the quark-quark DPDs, verifying that the infrared logarithms and divergences cancel in the matching. While we restrict to the flavor-non-singlet case, we do take color and spin correlations into account. Interestingly, quasi-DPDs combines nontrivial features from both the collinear and transverse momentum dependent quasi-parton distribution functions. This represents a first step in extending the quasi-PDF approach to DPDs, opening up a new way to constrain these distributions using lattice QCD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.