Abstract
Education infrastructure is one of the main barriers on school quality in Low- and Middle-Income Countries (L&MICs), since it is insufficient and unevenly distributed. Improving the school infrastructure is needed to provide a high-quality education environment. Although research on how to improve the infrastructure is available, there is still a lack of a consistent and systematic approach to develop large-scale interventions at the national or regional level. To fill this gap, we propose a data-driven methodology with the purpose of developing a prioritization of interventions to carry out a seismic disaster risk reduction program. The method starts by identifying groups of similar buildings using clustering analysis, starting with a seismic taxonomy as descriptor (i.e., model input). Then, domain experts analyze the suggested clusters to design scalable interventions for the representative building of each cluster. The proposed data-driven methodology requires experts’ criteria in each step to validate the results and make them applicable, but significantly reduces the bias by automating the decision-making process. We use as case study the Dominican Republic public school infrastructure and present the results of the application of the proposed method. The method presented herein is extensible to other infrastructure portfolios, as well as to other types of hazards.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.