Abstract

Imaging detectors for medical X-ray and Computed Tomography (CT) applications have undergone many improvements and technology changes over time. But most (dynamic) detectors sold in this field still rely on indirect conversion, using scintillators and photodiodes to convert the X-ray quanta ultimately into electrical signals. Direct conversion detectors promise very high spatial resolution and high signal-to-noise ratios. Some direct conversion materials may allow for counting or even energy resolving detection of the X-ray quanta. Based on this, for example spectrally resolving CT systems are becoming an interesting option for the next decade. This contribution highlights the requirements of advanced medical X-ray and CT imaging and shows examples of status and progress in the field. The emphasis is on the direct conversion sensors for pixelated detectors, but considerations on read-out concepts and on associated challenges such as interconnects will also be presented. Finally, the most burning issues, such as count rate limitations and polarization effects, will be discussed from an application point of view.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.