Abstract
Abnormal DNA ploidy, found in numerous cancers, is increasingly being recognized as a contributor in driving chromosomal instability, genome evolution, and the heterogeneity that fuels cancer cell progression. Furthermore, it has been linked with poor prognosis of cancer patients. While next-generation sequencing can be used to approximate tumor ploidy, it has a high error rate for near-euploid states, a high cost and is time consuming, motivating alternative rapid quantification methods. We introduce PloiViT, a transformer-based model for tumor ploidy quantification that outperforms traditional machine learning models, enabling rapid and cost-effective quantification directly from pathology slides. We trained PloiViT on a dataset of fifteen cancer types from The Cancer Genome Atlas and validated its performance in multiple independent cohorts. Additionally, we explored the impact of self-supervised feature extraction on performance. PloiViT, using self-supervised features, achieved the lowest prediction error in multiple independent cohorts, exhibiting better generalization capabilities. Our findings demonstrate that PloiViT predicts higher ploidy values in aggressive cancer groups and patients with specific mutations, validating PloiViT potential as complementary for ploidy assessment to next-generation sequencing data. To further promote its use, we release our models as a user-friendly inference application and a Python package for easy adoption and use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.