Abstract

Vision-and-language navigation (VLN) asks an agent to follow a given language instruction to navigate through a real 3D environment. Despite significant advances, conventional VLN agents are trained typically under disturbance-free environments and may easily fail in real-world navigation scenarios, since they are unaware of how to deal with various possible disturbances, such as sudden obstacles or human interruptions, which widely exist and may usually cause an unexpected route deviation. In this paper, we present a model-agnostic training paradigm, called Progressive Perturbation-aware Contrastive Learning (PROPER) to enhance the generalization ability of existing VLN agents to the real world, by requiring them to learn towards deviation-robust navigation. Specifically, a simple yet effective path perturbation scheme is introduced to implement the route deviation, with which the agent is required to still navigate successfully following the original instruction. Since directly enforcing the agent to learn perturbed trajectories may lead to insufficient and inefficient training, a progressively perturbed trajectory augmentation strategy is designed, where the agent can self-adaptively learn to navigate under perturbation with the improvement of its navigation performance for each specific trajectory. For encouraging the agent to well capture the difference brought by perturbation and adapt to both perturbation-free and perturbation-based environments, a perturbation-aware contrastive learning mechanism is further developed by contrasting perturbation-free trajectory encodings and perturbation-based counterparts. Extensive experiments on the standard Room-to-Room (R2R) benchmark show that PROPER can benefit multiple state-of-the-art VLN baselines in perturbation-free scenarios. We further collect the perturbed path data to construct an introspection subset based on the R2R, called Path-Perturbed R2R (PP-R2R). The results on PP-R2R show unsatisfying robustness of popular VLN agents and the capability of PROPER in improving the navigation robustness under deviation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call