Abstract
An IoT system is a smart network that connects all items to the Internet and exchanges data using Internet Engineering Task Force established protocols. As a consequence, everything is instantly accessible from any place and at any time. The Internet of Things (IoT) network is built on the backbone of tiny sensors embedded in common objects. There is no need for human intervention in the interactions of IoT devices. The Internet of Things (IoT) security risk cannot be ignored. Untrusted networks, such as the Internet, are utilized to provide remote access to IoT devices. As a result, IoT systems are susceptible to a broad range of harmful activities, including cyberattacks. If security problems are not addressed, critical information may be hacked at any time. This article describes a feature selection and machine learning-based paradigm for improving security in the Internet of Things. Because network data are inherently abundant, it must be reduced in size before processing. Dimension reduction is the process of constructing a subset of an original data collection that removes superfluous content from the essential data set. Dimension reduction is a data mining approach. To minimize the number of dimensions in a dataset, linear discriminant analysis (LDA) is used. Following that, the data set with fewer dimensions is put into machine learning predictors as a training set. The effectiveness of machine learning approaches has been assessed using a range of criteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.