Abstract

Neutron scattering and diffraction methods are of utmost importance for probing the structure and dynamics of condensed matter at an atomic, molecular and mesoscopic level. However, today's experiments, using either wavelength-selected cw beams from steady-state reactor or spallation sources or, on the other hand, comparatively weak pulsed spallation source beams (with the exception of the pulsed IBR-2 reactor in Dubna), suffer from relatively low source strengths, e.g. compared to synchrotron-radiation investigations. Therefore, neutron scattering methods can greatly benefit from next generation pulsed spallation neutron sources with 1–10 MW average proton beam power, which will allow analyzing wavelengths by time-of-flight (TOF) and thus utilizing in an experiment simultaneously a large fraction of the full wavelength band. However, the improved instantaneous flux will pose great challenges on the detection systems, since for instance for ESS, the strongest of the projected sources, the peak thermal neutron flux will be higher by nearly two orders of magnitude than at the presently strongest sources. Owing to current improvements in neutron optics and spectrometer design, the fluxes impinging on the samples will be further enhanced by another factor 5–10; however, this will be compensated for by the tendency to investigate smaller samples becoming accessible due to smaller foci and higher beam fluxes. Hence, thermal neutron detectors with up to two orders of magnitude higher peak count rate capacity in conjunction with microsecond TOF and for some applications sub-millimeter position resolutions are required, in addition to other characteristics like e.g. high long-term stability and low sensitivity to photon background. In this review article an overview will be given on the current state-of-the-art and on currently investigated novel solutions for thermal neutron detectors for very high rate and resolution time-resolved experiments, comprising silicon microstrip, hybrid low-pressure microstrip gas chamber and gas electron multiplier (GEM) detectors with solid neutron converters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.