Abstract

Background Fasciola hepatica, along with Fasciola gigantica, is the causative agent of fasciolosis, a foodborne zoonotic disease affecting grazing animals and humans worldwide. Pathology is directly related to the release of parasite proteins that facilitate establishment within the host. The dominant components of these excretory-secretory (ES) products are also the most promising vaccine candidates, the cathepsin L (Cat L) protease family.Methodology/Principal FindingsThe sub-proteome of Cat L proteases from adult F. hepatica ES products derived from in vitro culture and in vivo from ovine host bile were compared by 2-DE. The individual Cat L proteases were identified by tandem mass spectrometry with the support of an in-house translated liver fluke EST database. The study reveals plasticity within the CL1 clade of Cat L proteases; highlighted by the identification of a novel isoform and CL1 sub-clade, resulting in a new Cat L phylogenetic analysis including representatives from other adult Cat L phylogenetic clades. Additionally, for the first time, mass spectrometry was shown to be sufficiently sensitive to reveal single amino acid polymorphisms in a resolved 2-DE protein spot derived from pooled population samples.Conclusions/SignificanceWe have investigated the sub-proteome at the population level of a vaccine target family using the Cat L proteases from F. hepatica as a case study. We have confirmed that F. hepatica exhibits more plasticity in the expression of the secreted CL1 clade of Cat L proteases at the protein level than previously realised. We recommend that superfamily based vaccine discovery programmes should screen parasite populations from different host populations and, if required, different host species via sub-proteomic assay in order to confirm the relative expression at the protein level prior to the vaccine development phase.

Highlights

  • The trematode liver fluke, Fasciola hepatica, along with Fasciola gigantica are the causative agent of fasciolosis, a foodborne zoonotic disease affecting grazing animals and humans worldwide

  • The pathology of the disease is associated with the release of cathepsin L (Cat L) proteases from the parasite into the host

  • We have studied this vaccine candidate family at the population level with proteomic based assays using F. hepatica as a case study

Read more

Summary

Introduction

The trematode liver fluke, Fasciola hepatica, along with Fasciola gigantica are the causative agent of fasciolosis, a foodborne zoonotic disease affecting grazing animals and humans worldwide. The juvenile fluke migrate to the liver to mature before entering the host bile ducts [1]. Fascioliasis, liver fluke disease, causes annual losses of more than US$3000 million to livestock production worldwide through livestock mortality and by decreased productivity via reduction of milk, wool and meat yields [2]. F. gigantica is one of the most important helminth infections of ruminants in Asia and Africa and is most prominent in poorer regions impacting on individual and small farming communities; it inflicts significant losses in cattle, buffaloes, goats and sheep and in India, infection levels can reach 55% in isolated regions [2]. Along with Fasciola gigantica, is the causative agent of fasciolosis, a foodborne zoonotic disease affecting grazing animals and humans worldwide. The dominant components of these excretory-secretory (ES) products are the most promising vaccine candidates, the cathepsin L (Cat L) protease family

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.