Abstract

We propose a novel framework for learning linear time-invariant (LTI) models for a class of continuous-time non-autonomous nonlinear dynamics based on a representation of Koopman operators. In general, the operator is infinite-dimensional but, crucially, linear. To utilize it for effcient LTI control design, we learn a finite representation of the Koopman operator that is linear in controls while concurrently learning meaningful lifting coordinates. For the latter, we rely on Koopmanizing Flows - a diffeomorphism-based representation of Koopman operators and extend it to systems with linear control entry. With such a learned model, we can replace the nonlinear optimal control problem with quadratic cost to that of a linear quadratic regulator (LQR), facilitating efficacious optimal control for nonlinear systems. The superior control performance of the proposed method is demonstrated on simulation examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call