Abstract

Finite-sample system identification methods provide statistical inference, typically in the form of confidence regions, with rigorous non-asymptotic guarantees under minimal distributional assumptions. Data Perturbation (DP) methods constitute an important class of such algorithms, which includes, for example, Sign-Perturbed Sums (SPS) as a special case. Here we study a natural input design problem for DP methods in linear regression models, where we want to select the regressors in a way that the expected volume of the resulting confidence regions are minimized. We suggest a general approach to this problem and analyze it for the fundamental building blocks of all DP confidence regions, namely, for ellipsoids having confidence probability exactly 1/2. We also present experiments supporting that minimizing the expected volumes of such ellipsoids significantly reduces the average sizes of the constructed DP confidence regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.