Abstract
Abstract. We introduce a new autonomous path planning algorithm for mobile robots for reaching target locations in an unknown environment where the robot relies on its on-board sensors. In particular, we describe the design and evaluation of a deep reinforcement learning motion planner with continuous linear and angular velocities to navigate to a desired target location based on deep deterministic policy gradient (DDPG). Additionally, the algorithm is enhanced by making use of the available knowledge of the environment provided by a grid-based SLAM with Rao-Blackwellized particle filter algorithm in order to shape the reward function in an attempt to improve the convergence rate, escape local optima and reduce the number of collisions with the obstacles. A comparison is made between a reward function shaped based on the map provided by the SLAM algorithm and a reward function when no knowledge of the map is available. Results show that the required learning time has been decreased in terms of number of episodes required to converge, which is 560 episodes compared to 1450 episodes in the standard RL algorithm, after adopting the proposed approach and the number of obstacle collision is reduced as well with a success ratio of 83% compared to 56% in the standard RL algorithm. The results are validated in a simulated experiment on a skid-steering mobile robot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.