Abstract

Recent data stream processing systems (DSPSs) can achieve excellent performance when processing large volumes of data under tight latency constraints. However, they sacrifice support for concurrent state access that eases the burden of developing stateful stream applications. Recently, some have proposed managing concurrent state access during stream processing by modeling state accesses as transactions. However, these are realized with locks involving serious contention overhead. The coarse-grained processing paradigm adopted in these proposals magnify contention issues and does not exploit modern multicore architectures to their full potential. This paper introduces TStream, a novel DSPS supporting efficient concurrent state access on multicore processors. Transactional semantics is employed like previous work, but scalability is greatly improved due to two novel designs: 1) dual-mode scheduling, which exposes more parallelism opportunities, 2) dynamic restructuring execution, which aggressively exploits the parallelism opportunities from dual-mode scheduling without centralized lock contentions. To validate our proposal, we evaluate TStream with a benchmark of four applications on a modern multicore machine. Experimental results show that 1) TStream achieves up to 4.8 times higher throughput with similar processing latency compared to the state-of-the-art and 2) unlike prior solutions, TStream is highly tolerant of varying application workloads such as key skewness and multi-partition state accesses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.