Abstract

The vertices in many graphs are weighted unequally in real scenarios, but the previous studies on the maximum independent set (MIS) ignore the weights of vertices. Therefore, the weight of an MIS may not necessarily be the largest. In this paper, we study the problem of maximum weighted independent set (MWIS) that is defined as the set of independent vertices with the largest weight. Since it is intractable to deliver the exact solution for large graphs, we design a reducing and tie-breaking framework to compute a near-maximum weighted independent set. The reduction rules are critical to reduce the search space for both exact and greedy algorithms as they determine the vertices that are definitely (or not) in the MWIS while preserving the correctness of solutions. We devise a set of novel reductions including low-degree reductions and high-degree reductions for general weighted graphs. Extensive experimental studies over real graphs confirm that our proposed method outperforms the state-of-the-arts significantly in terms of both effectiveness and efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.