Abstract

Precise single tree delineation allows for a more reliable determination of essential parameters such as tree species, height and vitality. Methods of instance segmentation are powerful neural networks for detecting and segmenting single objects and have the potential to push the accuracy of tree segmentation methods to a new level. In this study, two instance segmentation methods, Mask R–CNN and DETR, were applied to precisely delineate single tree crowns using multispectral images and images generated from UAV lidar data. The study area was in Bavaria, 35 km north of Munich (Germany), comprising a mixed forest stand of around 7 ha characterised mainly by Norway spruce (Picea abies) and large groups of European beeches (Fagus sylvatica) with 181–236 trees per ha. The data set, consisting of multispectral images and lidar data, was acquired using a Micasense RedEdge-MX dual camera system and a Riegl miniVUX-1UAV lidar scanner, both mounted on a hexacopter (DJI Matrice 600 Pro). At an altitude of approximately 85 m, two flight missions were conducted at an airspeed of 5 m/s, leading to a ground resolution of 5 cm and a lidar point density of 560 points/m2. In total, 1408 trees were marked by visual interpretation of the remote sensing data for training and validating the classifiers. Additionally, 125 trees were surveyed by tacheometric means used to test the optimized neural networks. The evaluations showed that segmentation using only multispectral imagery performed slightly better than with images generated from lidar data. In terms of F1 score, Mask R–CNN with color infrared (CIR) images achieved 92% in coniferous, 85% in deciduous and 83% in mixed stands. Compared to the images generated by lidar data, these scores are the same for coniferous and slightly worse for deciduous and mixed plots, by 4% and 2%, respectively. DETR with CIR images achieved 90% in coniferous, 81% in deciduous and 84% in mixed stands. These scores were 2%, 1%, and 2% worse, respectively, compared to the lidar data images in the same test areas. Interestingly, four conventional segmentation methods performed significantly worse than CIR-based and lidar-based instance segmentations. Additionally, the results revealed that tree crowns were more accurately segmented by instance segmentation. All in all, the results highlight the practical potential of the two deep learning-based tree segmentation methods, especially in comparison to baseline methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.