Abstract
Nutrient availability influences virtually every aspect of an ecosystem, and is a critical modifier of ecosystem responses to global change. Although this crucial role of nutrient availability in regulating ecosystem structure and functioning has been widely acknowledged, nutrients are still often neglected in observational and experimental synthesis studies due to difficulties in comparing the nutrient status across sites. In the current study, we explain different nutrient-related concepts and discuss the potential of soil-, plant- and remote sensing-based metrics to compare the nutrient status across space. Based on our review and additional analyses on a dataset of European, managed temperate and boreal forests (ICP [International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests] Forests dataset), we conclude that the use of plant- and remote sensing-based metrics that rely on tissue stoichiometry is limited due to their strong dependence on species identity. The potential use of other plant-based metrics such as Ellenberg indicator values and plant-functional traits is also discussed. We conclude from our analyses and review that soil-based metrics have the highest potential for successful intersite comparison of the nutrient status. As an example, we used and adjusted a soil-based metric, previously developed for conifer forests across Sweden, against the same ICP Forests data. We suggest that this adjusted and further adaptable metric, which included the organic carbon concentration in the upper 20cm of the soil (including the organic fermentation-humus [FH] layer), the C:N ratio and of the FH layer, can be used as a complementary tool along with other indicators of nutrient availability, to compare the background nutrient status across temperate and boreal forests dominated by spruce, pine or beech. Future collection and provision of harmonized soil data from observational and experimental sites is crucial for further testing and adjusting the metric.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.