Abstract

In this note, we discuss the ellipticity of the single layer boundary integral operator for the wave equation in one space dimension. This result not only generalizes the well-known ellipticity of the energetic boundary integral formulation in $L^2$, but it also turns out to be a particular case of a recent result on the inf-sup stability of boundary integral operators for the wave equation. Instead of the time derivative in the energetic formulation, we use a modified Hilbert transformation, which allows us to stay in Sobolev spaces of the same order. This results in the applicability of standard boundary element error estimates, which are confirmed by numerical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.