Abstract

Multidimensional relaxation-diffusion correlation (REDCO) NMR is an assumption-free method that measures how water is distributed within materials. Although highly informative, REDCO had never been used in clinical MRI applications because of the large amount of data it requires, leading to infeasible scan times. A recently suggested novel experimental design and processing framework, marginal distributions constrained optimization (MADCO), was used here to accelerate and improve the reconstruction of such MRI correlations. MADCO uses the 1D marginal distributions as a priori information, which provide powerful constraints when 2D spectra are reconstructed, while their estimation requires an order of magnitude less data than conventional 2D approaches. In this work we experimentally examined the impact the complexity of the correlation distribution has on the accuracy and robustness of the estimates. MADCO and a conventional method were compared using two T1–D phantoms that differ in the proximity of their peaks, leading to a relatively simple case as opposed to a more challenging one. The phantoms were used to vet the achievable data compression using MADCO under these conditions. MADCO required ∼43 and ∼30 less data than the conventional approach for the simple and complex spectra, respectively, making it potentially feasible for preclinical and even clinical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call