Abstract

Hypervisor-based virtualization provides a natural way to integrate formerly distinct systems into a single mixed-criticality multicore system by consolidating in separated virtual machines. We propose an adaptive computation bandwidth management for such architectures, which is compatible with a potential certification based on the guarantee of specified bandwidth minimums and the isolation of overruns of virtual machines. This management uses periodic servers and an elastic task model to combine analyzability at design time with adaptability at runtime. Mode changes or early termination of VMs trigger a resource redistribution that reassigns spare capacity. In this paper we focus on the integration of an adaptive reservation policy into a virtualization software stack and the co-design of hypervisor and paravirtualized guest operating system. In a concrete implementation on a PowerPC 405, the bandwidth distribution policy incurred in a memory footprint below 2.7KB and a worst-case execution time for the redistribution function below 4 microseconds for realistic low numbers of VMs. Simulations over synthetically generated sets of VMs with random mode changes showed a gain of 13% of computation bandwidth when compared to an approach with fixed partitions and provided a relative error of allocated bandwidth to desired bandwidth 4 times lower.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.