Abstract
AbstractEngineering is based on the understanding of causes and effects. Thus, causality should also guide the safety assessment of complex systems such as autonomous driving cars. To ensure the safety of the intended functionality of these systems, normative regulations like ISO 21448 recommend scenario-based testing. An important task here is to identify critical scenarios, so-called edge and corner cases. Data-driven approaches to this task (e.g. based on machine learning) cannot adequately address a constantly changing operational design domain. Model-based approaches offer a remedy – they allow including different sources of knowledge (e.g. data, human experts) into safety considerations. With this paper, we outline a novel approach for ensuring automotive system safety. We propose to use structural causal models as a probabilistic modelling language to combine knowledge about an open-context environment from different sources. Based on these models, we investigate parameter configurations that are candidates for critical scenarios. In this paper, we first discuss some aspects of scenario-based testing. We then provide an informal introduction to causal models and relate their development lifecycle to the established V-model. Finally, we outline a generic workflow for using causal models to identify critical scenarios and highlight some challenges that arise in the process.KeywordsSOTIFCausalityProbabilistic reasoningModel-based engineeringScenario identification
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.