Abstract

AbstractCatalytic C–H activation reactions are now established as a means to directly transform organic molecules and are commonly associated with metals such as palladium, rhodium, ruthenium and iridium. This Account will describe a short number of reports demonstrating that structures containing main group elements can facilitate C–H activation processes. In particular, boron-based catalysts can promote catalytic arene C–H borylation reactions, and an emerging approach using phosphenium ions can also cleave sp2 C–H bonds. These processes use a Lewis acidic main group atom combined with a pendant base to cleave C–H bonds, which compares with metal-catalyzed reactions that proceed via concerted metalation deprotonation mechanisms.1 Introduction2 Metal-Catalyzed C–H Activation via CMD/AMLA Mechanisms3 C–H Borylation via Boron-Based Catalysts4 C–H Activation Using Phosphenium Ions5 Conclusions

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.