Abstract

Unmanned aerial-underwater vehicles (UAUVs) provide the potential for working on missions in complex multi-domain environments. To achieve amphibian mobility, current UAUV designs rely on additional mechanical components such as multiple layers of propeller blades, water ballast, buoys or wings. This paper presents a miniature UAUV which has a simple mechanical design that resembles a traditional quadcopter. The paper discusses the dynamic modelling, state estimation and control strategy for this UAUV, as well as a detailed characterization of the quadcopter blades operating in the air and water regimes. A strategy for the UAUV to breach calm water surface is then proposed and experimentally tested. The results demonstrate that the UAUV can successfully breach the still water surface, but also show tracking error and breaching delay that are not fully characterized by the model. This suggests the need to carry out further analysis on the dynamics of the UAUV both underwater and in the transition regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.