Abstract
It can be shown that the bosonic degree of freedom of the tightly bound on-site electron pairs could be separated as Schwinger bosons. This is implemented by projecting the whole Hilbert space into the Hilbert subspace spanned by states of two kinds of Schwinger bosons (to be called binon and vacanon) subject to a constraint that these two kinds of bosonic quasiparticles cannot occupy the same site. We argue that a binon is actually a kind of quantum fluctuations of electron pairs, and a vacanon corresponds to a vacant state. These two bosonic quasiparticles may be responsible for the Bose–Einstein condensation (BEC) of the system associated with electron pairs. These concepts are also applied to the attractive Hubbard model with strong coupling, showing that it is quite useful. The relevance of the present arguments to the existing theories associated with the BEC of electron pairs is briefly commented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.