Abstract

Preterm birth causes 1 million infant deaths worldwide every year, making it the leading cause of infant mortality. Existing diagnostic tests such as transvaginal ultrasound or fetal fibronectin either cannot determine if preterm birth will occur in the future or can only predict the occurrence once cervical shortening has begun, at which point it is too late to reverse the accelerated parturition process. Using iterative and rapid prototyping techniques, we have developed an intravaginal proof-of-concept device that measures both cervical bioimpedance and cervical fluorescence to characterize microstructural changes in a pregnant woman's cervix in hopes of detecting preterm birth before macroscopic changes manifest in the tissue. If successful, such an early alert during this "silent phase" of the preterm birth syndrome may open a new window of opportunity for interventions that may reverse and avoid preterm birth altogether.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call