Abstract

This work reports on the interactions of a model protein (p24, the capside protein of HIV-1 virus) with colloids obtained from polyelectrolyte complexes (PECs) involving two polysaccharides: chitosan and dextran sulfate (DS). The PECs were elaborated by a one-shot addition of default amounts of one counterpart to the polymer in excess. Depending on the nature of the excess polyelectrolyte, the submicrometric colloid was either positively or negatively charged. HIV-1 capsid p24 protein was chosen as antigen, the ultrapure form, lipopolysaccharide-free (endotoxin-, vaccine grade) was used in most experiments, as the level of purity of the protein had a great impact on the immobilization process. p24 sorption kinetics, isotherms, and loading capacities were investigated for positively and negatively charged particles of chitosans and dextran sulfates differing in degrees of polymerization (DP) or acetylation (DA). Compared with the positive particles, negatively charged colloids had higher binding capacities, faster kinetics, and a better stability of the adsorbed p24. Capacities up to 600 mg x g(-1) (protein-colloid) were obtained, suggesting that the protein interacted within the shell of the particles. Small-angle X-rays scattering experiments confirmed this hypothesis. Finally, the immunogenicity of the p24-covered particles was assessed for vaccine purposes in mice. The antibody titers obtained with immobilized p24 was dose dependent and in the same range as for Freund's adjuvant, a gold standard for humoral responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.