Abstract

One of the unresolved issues in physiology is how exactly myosin moves in a filament as the smallest responsible organ for contracting of a natural muscle. In this research, inspired by nature, a model is presented consisting of DPD (dissipative particle dynamics) particles driven by electro-osmotic flow (EOF) in micro channel that a thin movable impermeable polymer membrane has been attached across channel width, thus momentum of fluid can directly transfer to myosin stem. At the first, by validation of electro-osmotic flow in micro channel in different conditions with accuracy of less than 10 percentage error compared to analytical results, the DPD results have been developed to displacement of an impermeable polymer membrane in EOF. It has been shown that by the presence of electric field of 250 V/m and Zeta potential − 25 mV and the dimensionless ratio of the channel width to the thickness of the electric double layer or kH = 8, about 15% displacement in 8 s time will be obtained compared to channel width. The influential parameters on the displacement of the polymer membrane from DPD particles in EOF such as changes in electric field, ion concentration, zeta potential effect, polymer material and the amount of membrane elasticity have been investigated which in each cases, the radius of gyration and auto correlation velocity of different polymer membrane cases have been compared together. This simulation method in addition of probably helping understand natural myosin displacement mechanism, can be extended to design the contraction of an artificial muscle tissue close to nature.

Highlights

  • One of the unresolved issues in physiology is how exactly myosin moves in a filament as the smallest responsible organ for contracting of a natural muscle

  • In order to simulate the mentioned model, it is necessary to check the equations of three sections including electro-osmotic flow, polymer chain, Dissipative particle dynamics (DPD) simulation method, which is presented in the following

  • In order to evaluate the obtained results, first, the results are evaluated and validated in a simple channel under the influence of electro-osmotic flow, and the proposed artificial muscle will be simulated in different conditions

Read more

Summary

Introduction

One of the unresolved issues in physiology is how exactly myosin moves in a filament as the smallest responsible organ for contracting of a natural muscle. The influential parameters on the displacement of the polymer membrane from DPD particles in EOF such as changes in electric field, ion concentration, zeta potential effect, polymer material and the amount of membrane elasticity have been investigated which in each cases, the radius of gyration and auto correlation velocity of different polymer membrane cases have been compared together This simulation method in addition of probably helping understand natural myosin displacement mechanism, can be extended to design the contraction of an artificial muscle tissue close to nature. Since one of the main elements in myosin displacement is fluid and ion transfer, the proper method to perform this process for manufacturing an artificial muscle like a natural muscle requires a suitable and controllable method to pump nano/micro f­low[14]. Darbandi et al.[33] showed that the use of electro-osmotic flow in the transmission of monomer is being able to reduce the dispersion of the polymer chain compared to differential pressure methods

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call