Abstract

Apps are attracting more and more attention from both mobile and web platforms. Due to the self-organized nature of the current app marketplaces, the descriptions of apps are not formally written and contain a lot of noisy words and sentences. Thus, for most of the apps, the functions of them are not well documented and thus cannot be captured by app search engines easily. In this paper, we study the problem of inferring the real functions of an app by identifying the most informative words in its description. In order to utilize and integrate the diverse information of the app corpus in a proper way, we propose a probabilistic topic model to discover the latent data structure of the app corpus. The outputs of the topic model are further used to identify the function of an app and its most informative words. We verify the effectiveness of the proposed methods through extensive experiments on two real app datasets crawled from Google Play and Windows Phone Store, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.