Abstract
Condition based maintenance of rotary machines is centered on bearings, as they are the leading source of breakdowns in induction motors used in the industry. The health prognosis of bearings primarily involves the estimation of its remaining useful life (RUL). The accurate modeling of a bearing's degradation is key to correctly estimating its RUL. This paper investigates using generative adversarial networks (GANs) for modeling the degradation behavior of a bearing. GANs are used to estimate generative models, which can be sampled directly to generate the future trajectory of a bearing's health indicator. In the GAN framework, two artificial neural networks, a generator network G and a discriminator network D, engage in a game, where the network G tries to fool the network D by generating samples of data that resemble real data. The training process of GANs finds the Nash equilibrium to this game. The proposed approach for generating future trajectories of a bearing's health indicator is tested using publicly available run-to-failure test data. The results of this preliminary study indicate that the GAN framework is effective in modeling the degradation behavior of bearings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.