Abstract

Automatically generated tools can significantly improve programmer productivity. For example, parsers can be automatically generated from declarative specifications in form of grammars, which tremendously simplifies the task of implementing a compiler. In this talk, we present a method for the automatic synthesis of software verification tools. Our synthesis procedure takes as input a description of the employed proof rule, e.g., program safety checking via inductive invariants, and produces a tool that automatically discovers the auxiliary assertions required by the proof rule, e.g., inductive loop invariants and procedure summaries. We rely on a (standard) representation of proof rules using recursive equations over the auxiliary assertions. The discovery of auxiliary assertions, i.e., solving the equations, is based on an iterative process that extrapolates solutions obtained for finitary unrollings of equations. We show how our method synthesizes automatic safety and liveness verifiers for programs with procedures, multi-threaded programs, and higher-order functional programs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.