Abstract
ObjectiveTo evaluate whether the deep learning (DL) segmentation methods from the six teams that participated in the IWOAI 2019 Knee Cartilage Segmentation Challenge are appropriate for quantifying cartilage loss in longitudinal clinical trials. DesignWe included 556 subjects from the Osteoarthritis Initiative study with manually read cartilage volume scores for the baseline and 1-year visits. The teams used their methods originally trained for the IWOAI 2019 challenge to segment the 1130 knee MRIs. These scans were anonymized and the teams were blinded to any subject or visit identifiers. Two teams also submitted updated methods. The resulting 9,040 segmentations are available online.The segmentations included tibial, femoral, and patellar compartments. In post-processing, we extracted medial and lateral tibial compartments and geometrically defined central medial and lateral femoral sub-compartments. The primary study outcome was the sensitivity to measure cartilage loss as defined by the standardized response mean (SRM). ResultsFor the tibial compartments, several of the DL segmentation methods had SRMs similar to the gold standard manual method. The highest DL SRM was for the lateral tibial compartment at 0.38 (the gold standard had 0.34). For the femoral compartments, the gold standard had higher SRMs than the automatic methods at 0.31/0.30 for medial/lateral compartments. ConclusionThe lower SRMs for the DL methods in the femoral compartments at 0.2 were possibly due to the simple sub-compartment extraction done during post-processing. The study demonstrated that state-of-the-art DL segmentation methods may be used in standardized longitudinal single-scanner clinical trials for well-defined cartilage compartments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.