Abstract
Attributed graph clustering, leveraging both structural and attribute information, is crucial in various real-world applications. However, current approaches face challenges stemming from the sparsity of graphs and sensitivity to noise in Graph Convolutional Networks (GCNs). Moreover, GCN-based methods are often designed based on the assumption of homophilic graph and ignore heterophilic graph. To address these, we propose a graph clustering method that consists of four phases: graph enhance, graph reconstruction, graph refine, and dual-guidance supervisor module. An enhanced graph module is defined by an auxiliary graph to consider distant relationships in the topology structure to alleviate the limitations of sparse graphs. The graph reconstruction phase includes the creation and integration of homophily and heterophily graphs to achieve graph-agnostic. In graph refine, the auxiliary graph is iteratively improved to enhance the generalization of the representation. In this phase, a subspace clustering module is applied to convert attribute-based embeddings into relationship-based representations. Finally, the extracted graphs are fed to a dual-guidance supervisor module to obtain the final clustering result. Experimental validation on several benchmark datasets demonstrates the efficiency of our model. Meanwhile, the findings offer significant advancements in attributed graph clustering, promising improved applicability in various domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.