Abstract
We explore the thermodynamics in two-dimensional arrays consisting of Ising-type nanomagnets lithographically arranged onto random sites and angular orientations. Introducing these basic spin-glass ingredients, we study the characteristic features of the low-energy states achieved, following thermal-annealing protocols. From direct visualization of real-time dynamics, we record relaxation timescales together with magnetic susceptibility variations over temperature, revealing trends towards short-range order as randomness is increased, but falling short of pure spin-glass behavior. Our work provides a route towards the realization of artificial Ising spin-glass systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.