Abstract

Mixed-critical platforms require an on-chip interconnect and a memory controller capable of providing sufficient timing independence for critical applications. Existing real-time memory controllers, however, either do not support mixed criticality or still fail to ensure negligible allow a certain degree of interference between applications. On the other hand, Networks-on-Chip manage the traffic injection rate mainly by employing complex techniques; either back-pressure based flow-control mechanisms or rate-control of traffic load (i.e. traffic shaping). This work proposes such a Traffic Shaper Module that supports both monitoring and traffic control at the on-chip network interface or the memory controller. The advantage of this Traffic Shaper Module is that at system level it provides guaranteed memory bandwidth to the critical applications by limiting traffic of non-critical tasks. The system is developed in the Xilinx ZYNQ7000 System-on-Chip while the measurements were captured on a Zed-board development board. By enabling the Traffic Shaper in our architecture we achieved fine-grain bandwidth control with negligible overhead, while providing bandwidth of only 0.5-5 percent less than the theoretical specified bandwidth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.