Abstract

The Piedmont of the southern Appalachians is characterized by significant geophysical and geological anomalies which indicate there is a major crustal transition. Multiple hypotheses, including a suture zone and a subducted continental margin, have been presented to explain the variations. Although crustal seismic reflection data have provided significant constraints, there are ambiguities inherent in the interpretation of such data. The ambiguities can be reduced by careful consideration of related geophysical and geological observations. Although the importance of correlating crustal reflection data with known geologic features by tracing reflections to drill holes or to the surface cannot be overestimated, only rarely are such correlations possible. In almost all interpretations of crustal reflection structure it is necessary to constrain the model with methods such as seismic refraction, gravity, magnetics, conductivity, and surface geology (including palinspastic reconstructions). When information from these techniques is incorporated into interpretations of the Piedmont crustal structure, the model which appears to be most consistent with the observations is one in which the upper crust of the Piedmont is decoupled from the lower crust, and in which the lower crust thins eastward. The lower crust may be a subducted Precambrian continental margin and its associated transition toward thinner, basinal crust.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.